Retroactive Data Structures
(extended abstract)

Erik D. Demainé John laconb Stefan Langerman

Abstract present general transformations to make data structufies ef
We introduce a new data structuring paradigm in whid@iently retroactive. For oth_er da_lta structures v_vhere the de
operations can be performed on a data structure not oR§ndency between operations is stronger, efficient retroac
in the present but also in the past. In this new paradigHyity requires the development of new techniques. In par-
called retroactive data structuresthe historical sequenceticular, we present a retroactive heap that achieves optima
of operations performed on the data structure is not fixdpunds.

The data structure allows arbitrary insertion and deletion))) _

of operations at arbitrary times, subject only to consisyenl-l Comparison to persistenceThe idea of retroactive
requirements. We initiate the study of retroactive dafta structures is related at a high level to the classionoti
structures by formally defining the model and its variantf Persistent data structures, because they both consider t
We prove that, unlike persistence, efficient retroactivity notion of time, but otherwise they differ almost entirely.
not always achievable, so we go on to present several specific A Persistent data structure maintains several versions

retroactive data structures. of a data structure, and operations can be performed on
one version to produce a new version. In its simplest
1 Introduction form, modifications can only be made to the last structure,

. . . . thus creating a linear relationship amongst the versions. |
Suppose that we just discovered that an operation preyioys| . .

: ull persistence [4], an operation can be performed on any
performed in a database was erroneous (e.g., from a human

mistake), and we need to change the operation. In most %a_st version to create a new version, thus creating a tree

isting systems, the only method to support these change%t)ﬁsJCture of Versions. Confluently persistent _structuﬁjs_ [
o allow a new version to be created by merge-like operations

to rollback the state of the system to before the time in ques- . e .

. ; on multiple existing structures, and thus the versions form

tion and then re-execute all of the operations from the mod-,. . . :

adirected acyclic graph. The data structuring technigoes f

ifications to the present. Such processing is wasteful; inéf” . . . :
. . : ersistence represent a substantial cost savings ovesithe n
ficient, and often unnecessary. In this paper we introdue

) . . méthod of maintaining separate copies of all versions.
and develop the notion aétroactive data structureswhich The key difference between persistent and retroactive
are data structures that efficiently support mOdlflcatl(mséata structures is that, in persistent data structuredy eac
the historical sequence of operations performed on the-struersion is treated as a'n unchanaeable archive Eac'h hew
ture. Such modifications could take the form of retroacyiveY o 9 T
insertina. deleting. or chanaing one of the operations pagrsion i1 dependent on the state of existing versions of
formed %t a iveg’time in tr?e gast on the da?a structurFe)%lqe structure. However, because existing versions arerneve
question 9 P cplanged, the dependence relationship between two versions
After defining the model, we show that there is no genever changes. The user can view a past state of the structure

eral efficient transformation from non-retroactive sturets %Ut changes in the past state can only occur by forking

into retroactive structures. We then turn to the develc;é‘jf a new version from a past state. Thus, the persistence

o i aradigm is useful for maintaining archival versions of a
ment of specific retroactive structures. For some classe L .
i : . structure, but is inappropriate for when changes must be
data structures (commutative and invertible data strestur .
made directly to the past state of the structure.

and data structures for decomposable search problems), we, contrast, the retroactive model we define allows

changes to be made directly to previous versions. Because

*MIT Laboratory for Computer Science, 200 Technology Squ@am-

bridge, MA 02139, USAedemai ne@i t . edu. of the interdependence of the versions, such a change can
tPolytechnic University, 5 MetroTech Center, Brooklyn Ny 201, radically affect the contents of all later versions. In effe
USA.jiacono@oly. edu. we sever the relationship between time as perceived by a

fChargeé de recherches du FNRS, Université Libre de Bresell
Département d'informatique, ULB CP212, Belgium. Stef an.
Langer man@il b. ac. be.

data structure, and time as perceived by the user of the
data structure. Operations such as “Insert 42" now become

www.manaraa.com

“Insert at time 10 the operation ‘Insert 42’ ", realizing the mistake, you call customer service and you
reach a settlement in which the payment is transferred into
1.2 Motivation. In a real-world environment, large systhe correct account. Unfortunately, the next month, you are
tems processing many transactions are commonplace. chiarged a late fee for the late payment of the bill. You call
such systems there are many situations where the need axsstomer service again, and the late fee is removed as per
to alter the historical sequence of operations that were ptige previous agreement. The next month, interest from the
viously performed on the system. We now suggest seve@abw removed) late fee appears on the bill. Once again you
applications where a retroactive approach to data strestumust call customer service to fix the problem. This sequence
would help: of events is typical and results from the system'’s inabtlity
Simple Error. Data was entered wrong. The dateetroactively change the destination of the payment.
should be corrected and all secondary effects of the data Intentional Manipulation of the Past. In Orwell's
removed. 1984[10], the protagonist’s job was to change the past edi-
Security Breaches. Suppose some operations were digions of a newspaper to reflect the desires of the government
covered to have been maliciously performed by an unautho-control the past. Retroactively changing several docu-
rized user. Itis particularly important in the context ohco ments while maintaining consistency has many applications
puter security to not only remove the malicious transa&jorsome more dangerous than others.
but also to act as if the malicious operation never occurred. Dynamization. Some static algorithms or data struc-
For example, if the intruder modified the password file, naires are constructed by performing on some dynamic data
only should we restore that file, but we should also undo Istructure a sequence of operations determined by the input.
gins enabled by this modification. For example, the point-location data structure of Sarnak an
Tainted Sources. In a situation where data enters a sy§arjan [13] consists of performing a sequence of insertions
tem from various automated devices, if one device is fouadd deletions on a persistent binary search tree. Makiry suc
to have malfunctioned, all of its transactions are invalidio data structures retroactive would allow us to dynamically
a period of time and must be retroactively removed. For exiodify the input by retroactively modifying the operation
ample, in a situation where many temperature readings freeguence, thus making static algorithms or data structures
various weather stations are reported to a central compltedynamic.
one weather station’s sensors are discovered to be intermit
tently malfunctioning, we wish to remove all of the sensdr.3 Time is not an ordinary dimension. One may think
readings from the malfunctioning station because they dhat the problem of retroactive data structures can be dolve
no longer reliable. Secondary effects of the readings, sumhadding one more dimension to the structure under con-
as averages, historical highs and lows, along with weatlséteration. For example, in the case of a min-heap, it would
predictions must be retroactively changed. seem at first glance that one could create a two-dimensional
Disconnection. Continuing with the weather-stationvariant of a heap, and the problem would be solved. The idea
analogy of the previous paragraph, suppose the transmissoto assign the key values of the items in the heap tgjthe
system for one weather station is damaged, but later the dates and use the axis to represent time. In this represen-
is recovered. We should then be able to retroactively entation, each item in the heap is represented by a horizontal
the reports from the weather station, and see the effects of
the new data on, for example, the current and past forecasts.

Online Protocols. In a standard client-server model, ‘ ‘ ‘ lifespan of element 4
. f i i lifespan df elemerit 3 :
the server can be seen as holo!lng a data structure, andsclient | iespan of elomerit 2
send update or query operations. When the order of the | iiespan of elemerit 1 ‘ | |
requeSts IS Important (e'g'! Internet aUCtlonS), the usams insért(l) insén(Z) ingert(S) ingert(4) d_elet:e—min d_elet:e—min | -0
send a timestamp along with their requests. In all fairness, deletermin. - defete-min sy
the server should execute the operations in the o_rder they | | | lfespan of element 4
were sent. If a request is delayed by the network, it should | | | lifespan df elemerit3
be retroactively executed at the appropriate time in the pas |~ | . lesandeemen2__
o s ' ' irespan or elemen

Settlements. In some cases it is mutually agreed upon! jicspan of elemerito
by the partles InVO|Ved. to Change some paSt transaction %Qér (O)insén(l)insért(z)insért(S)insért(A) i delet:e—min i delet:e—min
all of its effects. We cite one example of such a settlement delete-min delete-min

and describe how the traditional method of handing such - 2

settlements often fails in today’s systems. Suppose Yeljure 1: A single insertion of an insertion operation in a

have two charge cards from one company. When a Billyoactive heap data structure can change the outcome of
comes from one card, you pay the wrong account. Up@Qery delete-min operation and the lifespan of every elémen

www.manaraa.com

line segment. The left endpoint of this segment represetitere are two operations of interest:
when an item is inserted into the heap and the right endpoiq
represents when the item is removed. If the only operations’
supported by the heap are insert() and delete-min(), then we
have the additional property that there are no points belov2. Deletét): delete the past update operatignfrom the
the right endpoint of any segment, because only minimal sequencé/ of updates.

items are removed _from the heap. Whlle this seems to be Thus, the retroactive versions of standard insert
a clean two-dimensional representation of a heap throughou . N

and deletér) operations are |Insdet ‘“insert(z)”),

time, retroactively adding and removing an operation in trl‘r?ser(t, ‘delete(z)’), and Deleté), where ¢ repre-

heap cannot simply be implemented by adding or removing a g .
. . . < t;
line segment. In fact, the endpoints of all the segmentsd:ogFmS a moment in time. For examplefif, < t < t;,

: dPnser(t, “insert(x)”) creates a new operation= inser{z),
be changed by inserting a single operation, as illustrated i,.” " o o .
Figure 1 which inserts a specified element and modifies history

— I . to suppose that operatiom occurred between operations
Thus, while time can be drawn as a spatial dimension, . .
anduy, in the past. Informally, we are traveling back

that dimension is special in that complicated dependencqi‘é'%i‘ .))
. in lime to a prior state of the data structure, introducing or
may exist, so that when small changes are made to some

part of the diagram, changes may have to be made to Eﬁg\slzz?zgqgn update at that time, and then returning to the
re_st of Fhe diagram. Thus, traditional geomet_nc and hign- All such retroactive changes on the operational history
dimensional data structures cannot be used directly '[(ESO(|)¥ the data structure potentiallv affect all existing o

most retroactive data-structure problems. New teChniqueestween the time Or]f modific);tion and the ?esgnt time
must be introduced to create retroactive data structurés Wi P '
out explicitly storing every state of the structure, mudteli
Chan’s breakthrough dynamic convex hull algorithm [3

which does not explicitly store the hull.

Inser{t,u): insert intoU a new update operation at
timet (or before operatiom; if it already exists).

articularly interesting is the (common) case in which loca
hanges propagate in effect to produce radically different
erceived states of the data structure. The challenge is to

realize these perceived differences extremely efficiebgly

1.4 Outline. The rest of the paper proceeds as follow.!sr.anICIt representations.

In Section 2, we further develop the model of retroactiv .2 Full Retroactivity. The definitions presented above

data structures and explore the possible variants on Fnaéature only a partial notion of retroactivity: the ability

model. Next, Section 3 considers some basic proble . . _
- . . nsert or delete update operations in the past, and to view
about retroactivity, proving separations among the mo .

e effects at the present time. Informally, we can travel

yarlano_ns a_nd proving that autqmauc efficient retroatis ba]ck in time to modify the past, but we cannot directly
impossible in general. In Section 4, we present two generd . L

. D L observe the past. A data structurefudly retroactiveif, in
transformations to construct an efficient retroactive wers addition to allowing ubdates in the past. it can answer @seri
of a data structure, one for commutative invertible operai gup past, Gae

. about the past. In some sense, this can be seen as making
and one for any decomposable search problem. Finally, in . . . :)
. . i . ”’a partially retroactive version of a persistent versionhs t
Section 5, we discuss specific data structures for which we . .
o . . .original structure. Thus, the standard se&ighoperation,
propose to create efficient retroactive structures. Tabte 1

Section 5 gives a partial summary of the results obtained which finds an element in the data structure, becomes
9 P Y ‘Query(t, “search{z)”), which finds the elementin the state

5 Definitions of the data structure at tinte

In this sectio_n, we define the_precise operations that we Running Times. When expressing the running times
generally desire from a retroactive data structure. of retroactive data structures, we will use for the total

) o number of updates performed in the structure (retroactive o
2.1 Partial Retroactivity. Any data structural problempqy) - for the number of updates before which the retroactive
can be reformulated in the retroactive setting. In gener@beration is to be performed (.6, » < t < tm_r11)s

made over time. We define the list = [uy,, ..., us,.] Of structure at any single time. Most running times in this pape
updates performed on the data structure, whereis the e expressed in terms of, but in many cases, it is possible
operation performed at tim, andt; <ty <--- < tpm. to improve the data structures to express the running time

The data structure igartially retroactiveif, in addition g the operations in terms of andr, so that retroactive
to supporting updates and queries on the “current state”ferations performed at a time closer to present time are

the data structure (present time), it supports insertioth afecuted faster. These improvements are not detailed here
deletion of updates at past times as well. In other wordge to space constraints.

www.manaraa.com

2.4 Consistency.We assume that only valid retroactive The rollback method is widely used in database manage-
operations are performed. For example, in a retroactineent systems (see e.g. [11]) and robust file systems for con-
dictionary, a deletg:) operation for a keyk must always currency control and crash recovery. It has also been gudie
appear after a corresponding ingéitin the listU; and in a in the data structures literature under the name of unlghnite
retroactive stack, the number of py$loperations is always undo orbacktracking9, 19].

larger than the number of p@poperations for any prefix Of course, this result, and its extension to operations
of U. The retroactive data structures we describe in thidth nonuniform costs, is far too inefficient for applicat®
paper will not check the validity of recursive updates, bwthere » can ben or even larger—the total number of

it is often easy to create a data structure to verify the itglidoperations performed on the data structure. The goal would

of a recursive operation. be to reduce the dependence oin the running time of
retroactive operations. We show that this is not possible in
3 General Theory the straight-line-program model of computation:

The goal of this research is to design retroactive strusture

for abstract data types with performance similar to theirnoTHEOREM 3.2. There exists a data structure in the straight-

retroactive counterparts. This section considers somkeef line-program model, supporting@(1) time update opera-

most general problems about when this is possible. tions, but the (partially) retroactive insertions of thogp-
Unless stated otherwise, the results will apply to thexations requireQ(r) time, worst case or amortized.

RAM model of computation (or Real-RAM when real valueBroof: The data structure maintains two valu&sandY’,

are used), and sometimes to the pointer model [18] as wailitially 0, and supports operations ad@X and addYc)

Lower bounds will be given in the straight-line-prograrwhich add the value to the valueX or Y, and mulXY(),

model [16] or in the cell-probe model [20]. which multipliesY” by X, and store the resulting value in
Queries return the value of.
3.1 Automatic Retroactivity. A natural question in this Consider the sequence ofi = 2n + 1 opera-

area is the following: is there a general technique ftions: [addY(a,), mulXY(), addY(a,_1), mulXY(), ...,
converting any data structure in (e.g.) the pointer-maehimulXY (), addY(aq)]. At the end of the sequencd&; = 0
model into an efficient partially retroactive data struefirandY = 0. We then retroactively insert the operation
Such a general technique would nicely complement existitegldX ()" at the very beginning of the sequence. The value
methods for making data structures persistent [4, 5]. A§Y is nowag + a1z + azz? + --- + a,z”, which is a
described in the introduction, retroactivity is fundanalyt polynomial of degree in 2 with arbitrary coefficients. By
different from persistence, and known techniques do ndbtzkin's theorem [16], the computation of that polynomial
apply here. for a given value of: requires2(n) multiplications, regard-
One simple approach to this general problem is thess of how much preprocessing time or space is used. Thus
rollback method Here we store as auxiliary information althe retroactive insertion of the addX operation requires
changes to the data structure made by each operation in shelhmany multiplications. Because the retroactive maatific
a way that every change could be reversed. For operationgion can be repeated an arbitrary number of times, and each
the present, the data structure proceeds as normal, modndmlification will have the same worst-case lower bound, the
some extra logging. When the user requests a retroactwser bound also applies to amortized data structurest
change at a past timewith ¢,,_, < ¢t < tm_r41, the The straight-line-program model counts only the num-
data structure rolls back all changes made by operatidres of arithmetic operations performed by a program. Our
Um, - - -, Um—_r+1, then applies the retroactive change as ldwer bound thus holds in more general models of com-
it were the present, and finally re-performs all operatiopsitation such as the Real-RAM model or the algebraic-
Um—ri1,---,Um. Notice that these re-performances magomputation-tree model.
act differently from how the operations were performed
before, depending on the retroactive change. Because 3tz From Partial to Full Retroactivity. A natural general
changes made to the data structure are bounded by the imestion about the two versions of retroactivity is whether
taken by the operations, a straightforward analysis prthes partial retroactivity is indeed easier to support than full
following theorem: retroactivity. In other words, is it easier to answer querie
only about the present? We first give a partial answer:

THEOREM3.1. Given any data structure that performs a

collection of operations each in worst cagén) time, there THEOREM3.3. In the cell-probe model, there exists a
is a corresponding retroactive data structure that supportlata structure supporting partially retroactive updates i
the same operations i0(7'(n)) time, and supports retroac-O(1) time, but fully retroactive queries of the past require
tive versions of those operations@r7'(n)) time. Q(logn/loglogn) time.

www.manaraa.com

Proof: The data structure is for the following problemstructure will never excee@(mT'(m)). |
maintain a set of numbers subject to the update ifert
which adds a numberto the set, and the query sghwhich 4 Transformable Structures

reports the sum of all of the numbers. For this problem, te this section, we present some general transformations to

only retroactive update operations are Ingertinsert(c)”) make data structures partially or fully retroactive for s
and Deletét), whose effects on queries about the present aigsy classes of problems.

to add or subtract a number to the current aggregate. Thus,

a simple data structure solves partially retroactive ugslaly 1 commutative Operations. To highlight the difficult

in O(1) time per operation. In contrast, to support queriggse of nonlocal effects, we define the notioo@ihmutative

at arbitrary times, we need to remember the order of tggeraﬂons A set of operation types isommutativeif

update operations and support arbitrary prefix sums. Thifgs state of the data structure resulting from a sequence of

we obtain a lower bound df(logn/ loglogn) in the cell- gperations is independent of the order of those operations.

probe model by a reduction from dynamic prefix sums [7]. |t 5 data structure has a commutative set of operations,

= o performing an operation at any point in the past has the same

On the other hand, we can show that it is alwaysfect as performing it in the present, so we have:

possible, at some cost, to convert a partially retroactatad

structure into a fully retroactive one: LEMMA 4.1. Any data structure supporting a commutative
set of operations allows the retroactive insertion of opera

THEOREMS'A" ATW partially retroactwe d_ata structure ;o nq in the past (and queries in the present) at no additiona
the pointer-machine model with constant indegree, Sur"poégymptotic cost

ing T'(m)-time retroactive updates an@(m)-time queries
about the present can be transformed into a fully retroactiv. We say that a set of operationsiwertibleif, for every
data structure with amortized(/m T'(m))-time retroac- operationu, there is another operatiosl that negates the
tive updates an@d(y/m T'(m) + Q(m))-time fully retroac- effects of operation, that is, the sequence of operations
tive queries using (m1'(m)) space. [u,u'] doesn’t change the state of the data structure.

Proof: We define,/m checkpoints,,. .., ., such that at)

most2,/m operations have occurred between consecutiy§MMA 4.2. Any data structure supporting a commuta-
checkpoints, and maintai/m versions of the partially tive anq invertible sgt_ of operatlons_can be made partially
retroactive data structut:, ..., D s, where the structure retroactive at no additional asymptotic cost.

D; only contains the updates that occurred before time
When a retroactive update is performed for timewe
perform the update on all structurés; such thatt; > t.
When a retroactive query is made at timewe find the
largesti such thatt > ¢;, and perform onD; all updates

For example, a data structure feearchable dynamic
partial sumg12] maintains an array\[1..n] of values, where
sum(i) returns the sum of the firstelements of the array,
searclHij) returns the smallestsuch that surfi) > j, and
k) updatéi, c) adds the value to A[i]. The state of the data
that occurred between timesand?, and finally perform the gy, cqyre at the present time is clearly independent of the o

query on the resulting structure. der of the update operations, so it is commutative. Any oper-

In order to reduce space, we use persistent data stryes | updatéi, ¢) is negated by the operation updéte c),
tures [4]. Given a sequenceof operations, we perform the i

) . g so the updates are also invertible, and so any data structure
sequence on a fully persistent version of the partiallyo@tr ¢, searchable dynamic partial sums is automatically par-

tive data structure, and keep a poinferto the version ob- ;

: X ;) tially retroactive.
tained after the first,/m operationsfof =1, ..., v/m. The An important class of commutative data structures are
retroactive updates branch off a new version of the datastrg, searching problemsThe goal is to maintain a sét of

ture for each of the modified;. After /m/2 retroactive phiects under insertion and deletion operations, so that we

updates have been performed, we rebuild the entire struge, efficiently answer querig(z, S) that ask some relation

ture in timeO(mT'(m)). This will ensure that the number¢ o Lo object with the setS. Because a sef is by

of updates between any two checkpoints is always betweRlinition unordered, the set of operations for a searching
v/m/2 and3y/m/2. The resulting data structure will have, piem is commutative, given that the deletion of an object
the claimed running times. The fully persistent version qf always performed after its insertion. As long as the

the partially retroactive data structure after arebuild use o qactive updates do not violate this consistency ceoit
at mostO(mT'(m)) space because it can use at most O have:

unit of space for each computational step. The data struc-

ture will perform at most/m /2 retroactive updates betwee EMMA 4.3. Any data structure for a searching problem
two rebuilds, each using at ma8{/m T'(m)) time and ex- can be made partially retroactive at no additional asymiatot
tra space, and so the space used by the fully retroactive datst.

www.manaraa.com

For example, dictionary structures, but also dynaméation of Theorem 4.1. For example, any comparison-based
convex hull or planar width data structures can be statdidtionary where only exact search queries are performed
as searching problems and are thus automatically partialan be made fully retroactive by storing with each key the
retroactive. Note that these results can also be combirtbd viimes at which it was present in the structure. The resulting
Theorem 3.4 to obtain fully retroactive data structures. data structure will us®(m) space and all operations can be

performed inO(log m) time, alog m factor improvement in

4.2 Decomposable Searching ProblemsA searching both time and space over the straightforward application of
problem maintains a setS of objects subject to queriesTheorem 4.1.
Q(z, S) that ask some relation of a new objecwith the In other cases, though, improving upon the structures
setS. We already saw in Lemma 4.3 that data structures foiotained from Theorem 4.1 seems rather difficult, as is
searching problems are automatically partially retroactA the case for example with the dictionary problem allowing
searching problem idecomposabliéthere is a binary opera- predecessor and successor queries. Indeed, we can view
tor O (computable in constant time) such tidits, AUB) = it as a geometric problem, in which we maintain a set of
O(Q(x, A),Q(z, B)). Decomposable searching problemisorizontal line segments, where theoordinate of each line
have been studied extensively by Bentley and Saxe [2]. degment is the element’s key and theextent of the line
particular, they show how to transform a static data strusegment is the element’s lifetime. A faster retroactiveadat
ture for such a problem into an efficient dynamic one. Btructure would immediately result in a faster data strrectu
this section, we show that data structures for decomposdabledynamic planar point location for orthogonal regions,
searching problems can also be made fully retroactive. which may also play a role in general dynamic planar point
THEOREM4.1. Any data structure for a decomposablclaocation' In f_act,.this retroactivg approach ﬁs hinteq at as

. L . . a research direction for dynamic planar point location by
searching problem supporting insertions, deletions, argjnoeyink [15, p. 566]
queries in timeT'(n) and spaceS(n) can be transformed T '
into a fully retroactive data structure with all opera- S -
: . . . 5 Maintaining the Timeline
tions taking timeO(T'(m)) if T(m) = Q(n®) for some) _)
e > 0, or O(T(m)logm) otherwise. The space used Ve sr_lowed in Theorem 3.2 in Section 3.1_ that no ggn_eral
O(S(m) log m). technique can turn every data structure into an efficient
Proof: Every element that was ever inserted in the ddfigtroactive counterpart. This suggests that in order taiobt
structure can be represented by a segment on the ifficient data structures, we need to study special cases
line, between its insertion time and its deletion time (§eparately. In this section, we show how to construct
present time if it wasn’t deleted). We maintain a segmeiiiroactive data structures by maintaining a structure on
tree [1], which is a balanced binary tree where the lea® Of the sequence of update operations (the timeline).
correspond to the elementary intervals between consecufi@Ple 1 gives a partial summary of our results. .
endpoints of the segments, and internal nodes correspond to!N the following, we assume that the sequericeis
the union of the intervals of their children. Each segmeff@intained in a doubly linked list, and that when a retroac-
is thus represented as the union@flog m) intervals, each tive operation is performed at timea pointer to the opera-
represented by one node of the tree, and each node of theliRéefollowing time in U is provided (such a pointer could
will contain the set of segments it represents. For each,no@ example have been stored during a previous operation).
we maintain that set in a data structure supporting the esit" the case where the pointer is not provided, it could easily
queries. Each retroactive update affects at niddbg m)
of those data structures. Given a poinbn the timeline,

the set of segments containing that point can be expressed Data Partially Fully
as the union ofO(log m) sets from as many nodes. For Structure Retroactive| Retroactive
a retroactive query Que(y, z), we queryz in each of the Dictionary (exact) O(logm) O(logm)
O(logm) sets and compose the global result using the | Dpictionary (successor) O(logm) O(log* m)
operator. IfT'(m) = Q(n), then the query and update times Queue O(1) O(log m)
for a retroactive operation form a geometric progression Stack O(logm) O(logm)
and the total time i$)(T'(n)), otherwise, the total time is DEQUE O(logm) O(logm)
O(T (m)logm). O Union/Find O(logm) O(logm)
For example, dictionaries, dynamic point location, and Priority Queue O(logm) | O(y/mlogm)

nearest-neighbor query data structures solve decomposabl

searching problems thus can be made fully retroactive. Tible 1: Running times for retroactive versions of a few
course, in many cases, it will be possible to improve tmemmon data structures: is the number of operations.

fully retroactive data structures obtained through theliapp

www.manaraa.com

be found inO(log m) time by maintaining a binary searchretroactive without changing their asymptotic run-times.
tree indexed by time on top &f.
5.2 Doubly Ended QueuesA doubly ended queue
5.1 Queues.A queue supports two update operationfleque) maintains a list of elements and supports four up-
enqueuér) and dequeug and two query operations, frqft date operations: pusik), popL() which insert or delete an
which returns the next element to be dequeued, and(backement at the left endpoint of the list, pughiR popR),
which returns the last element enqueued. Here we deéiich insert or delete an element at the right endpoint of the
scribe two data structure, one partially retroactive and olist, and two query operations I€¢ftand right) that return
fully retroactive, that thus support the update operatiotiee leftmost or rightmost element in the list. The deque gen-
Inser(t, “enqueuéz)”), Inser{t, “dequeu€)”), Deletét), eralizes both the queue and the stack.
and queries, Quey, front()), and QuerYt,_ back()”). THEOREMDb.1. There exists a fully retroactive DEQUE
The partially retroactive data structure will only allow)
queries at the present time, that is, at time 0. data structure with aII_ retroactlve_z opera‘qons tgklng time
O(log m) and present-time operations takidy 1) time.

LEMMA 5.1. There exists a partially retroactive queud’roof: In a standard implementation of a DEQUE in an
data structure with all retroactive updates and presenteti &ray A, we initialize variables, = 1 andR = 0. Then
queries taking)(1) time. a pushRz) operation increment® and places: in A[R],
Proof: The data structure maintains the enqueue operati®i®9R) decrements, pushl(x) decrementd. and places
in a doubly linked list, and two pointers3 will point to the # in A[L], and popL) incrementsL. The operation leff
last enqueued element in the sequence, Ao the next '€turnsA[L] and right) returnsA[£].

element to be dequeued. When an enqueue is retroactively [N Our retroactive implementation of a DEQUE, we also
inserted, if it occurs before the operation pointed tofyy MaintainL andR: if we maintain all pushRr) and popR)

we move that pointer to its predecessor. When an enquéigrations in alinked list/ and associate a weight efl to

is removed, if it occurs before the operation pointedfy €ach pushRr) operationand a weight of1 to each popR),

we move that pointer to its successor. When a dequelien 2 at timet can be calculated as a weighted sum of a
retroactive or not, is performed, we move the front point@f€fix of the list up to time. The same can be done fbr

to its successor, and when a dequeue is removed, we m&@ntaining the lisU/,, and reversing the wqghts.

the front pointer to its predecessor. Tiepointer is only The values of the sums for all prefixes 6fz can
updated when we add an enqueue operation at the en@®fmaintained in the modifieth, b)-tree of [6] with the

the list. The front) and back) operations return the itemséléments of the list as leaves. Every node of the tree will
pointed byF andB, respectively. O contain a value:, and the sum of the values along a path

to a leaf will compute the sum of the prefix éfg up to
LEMMA 5.2. There exists a fully retroactive queue datthat element. After inserting an element with weighin
structure with all retroactive operations taking timehe list and in the tree, we set thevalue in the leaf ta:
O(log m) and present-time operations takidy1) time. and walk along the path to the root, and adtb ther of
Proof: We maintain two order-statistic treds and7,;. The all right siblings along the path. Deletions are processed
treeT, stores the enque(e) operations sorted by time, andsymmetrically.
theT, stores the deque(eoperations, sorted by time. The Finally, we have to describe how to extra¢f:] from
update operations can then be implemented directly in tite data structure, where = R at timet¢. For this, we
O(logm), wherem is the size of the operation sequencaugment each node of the tree with two values containing the
currently stored. minimum and maximum prefix sum values for all the leaves
The Queryt, “front()”) operation is implemented byin its subtree. Note that these values can also be maintained
queryingT, to determine the numbet of dequeué) op- afterinsertions and deletions by adding them whenever
erations performed at or before time The operation is added to the value of the same node, and updating them
then returns the item i, with time rankd + 1. The if aninsertion occurs in their subtree.
Query(t, “back()”) operation uses. to determine the num- To find the contents ofi[i] at time¢, we find the last
bere of enqueug) operations that were performed at or beimet' < ¢t whenR had value. This can be done by finding
fore time t, and simply returns the item iff, with time the last operation if/r before timet, walking up the tree,
ranke. Thus, both queries can executed in tiMBog m). and walking back down the rightmost subtree for which
Using balanced search trees supporting updatesidrbetween the minimum and maximum value. The same is
worst-case constant-time [6], and by maintaining pointedsne forUy,. |
into the trees to the current front and back of the queues,
updates and queries at the current time can be suppofel Union-Find. A union-find data structure [17] main-
in O(1) time. Thus queues may be made efficiently fulliains an equivalence relation on a setf distinct elements,

www.manaraa.com

that is, a partition ofS into disjoint subsets (equivalencénserted in the structure are distinet.will be used to denote
classes). The operation cre@ticreates a new elememtn the insertion time of key, anddy, its deletion time. We write

S, with its own equivalence class, uni@nb) merges the two @, for the set of elements contained in the priority queue
sets that contain andb, and finda) returns a unique repre-at time¢, and soQ), is the set of elements in the queue in
sentative element for the class @f Note that the represen-the present time. Lef>; = {k|t;, > t} be the set of keys
tative might be different after each update, so the main usserted after time t, anf)>; = {k ¢ Qo|d, > t} be the set

of find(a) is two determine if two elements are in the samef keys deleted after time

class. The Union-Find structure can be made fully retroac- In order to construct a retroactive priority queue, we
tive, but to simplify the discussion, we replace the {i)d need to learn more about the structure of the problem.
operation by a samesget b) operation which determinesdf For this, we represent a sequence of updates by a planar
andb are in the same equivalence class. figure where ther axis represents time, and thg axis

THEOREMS5.2. There exists a fully retroactive Union-.represents key values. In this representation, each ktem

SameSet data structure supporting all operations in the heap is represented by a horizontal line segment.

O(log m) time Yhe left endpointty, k) of this segment represents when an
Proof: The equivalence relation can be represented b)}t%m is inserted into the heap and the right endp(ift k)

i re resents when the item is removed. Similarly, a delete-
forest, where each equivalence class corresponds to a tree

in the forest. The create) operation constructs a new tre (i) operation is represgnted by a_vertlcal ray s_hootlng
. . . . romy = —oo and stopping at the intersection with the
in the forest with a unique node samesgt, b) determines horizontal segment representing the element it deletess,Th
if the root of the trees of andb are the same, and uni@n b) g P g '

assumes andb are not in the same tree, sétss the root inser{k) operations paired with their corresponding delete-

of the tree that contains it, and creates an edge betweewm() are together represented by upside-down "L" shapes,

andb. Such a forest can be maintainedflog m) time per and no two “L” intersect, while elements still in the structu

operation using the link-cut trees of Sleator and Tarjarj,[lﬁlt present time (i.e. if)) are represented by horizontal

which maintain a forest and support the creation and deletis” > See Figure 2.

of nodes, edges, and the changing of the root of a tree.
In order to support retroactive operations, we modify the
above structure by adding to each edge the time at which it
was created. The link-cut tree structure also allows to find
the maximum edge value on a path between two nodes.| To
determine whether two nodes are in the same set attime:

we just have to verify that the maximum edge time on the j A
path froma to b is no larger than. o | W ‘ H ‘

]Y'—igure 2: The “L" representation of a sequence of operations

5.4 Priority Queues. More sophisticated than queues,
stacks and deques is theority queue which supports op- | T q
erations inse(t), which inserts an element with key value
k, delete-mirt) which deletes the element with smallest ke
and the query find-mif) which reports the current mini-
mum key element. The delete-nf)noperation is particu-

: . . One obvious invariant of a priority queue data structure
larly interesting here because of its dependence on all oper .
. .] . IS_that the numbe(Q,| of elements present in the queue
ations in the past: which element gets deleted depends. on) .
T Is always equal to the number of inserts minus the number
the set of elements when the operation is executed. Mote) : .
. o . . of delete-min operations. Thus, when we add an operation
precisely, it is delete-mif) that makes the set of operations™ . ., . - .
. u = “insert(k)” at time ¢ in the past, one element will have
non-commutative.

- . .to be added). There are two possibilities: if the element
Priority queues seem substantially more challengi q . . .
rfcthsé not deleted between timeand present timek can just

tha_n queues and stacks. Figure 1 ShO\.NS an exgmpl_e Ofpe added t@),. Otherwise, the eleme#tis deleted by some
major nonlocal effects caused by a minor modification 10 o - ey
gperationu’ = “delete-min()”, but then the element that

the past in a priority queue. In particular, in this exampls}}as supposed to be deleted Wywill stay in the structure

the lifetime of all elements change because of a single. L)
Inser(#, “insert(k)’) operation. Such cascading effectg'%ﬁ'ttle longer until it is deleted by some other delete-(in

. . ; gperation and so on. So the insertion of operati@auses a
need to be succinctly represented in order to avoid the co L ; Ll

. ; e . o cascade of changes which is depicted in Figure 3.
inherent in any explicit maintenance of element lifetimes.

Without loss of generality, we assume that all key valueEmMMA 5.3. After an operation Inseft, “insert(k)”), the

www.manaraa.com

COROLLARY 5.1. After an operation Dele{g), where the
operation at timet is “delete-mir()”, the element to be
inserted inQq is

: - max kl
rm — - k' €Ds,

BecauseD>; can change for many values ofeach
time an operation is performed, it would be quite difficult
T W 1 W to maintain explicitly. The next lemma will allow us to avoid

this task. We say that there isbaidgeat timet if Q; C Q.
Bridges are displayed as dotted vertical lines in Figure 2.

i HH
Figure 3: The Inse(t, “insert(k)”) operation causes aLEMMA 5.4. Lett’ be the last bridge beforg then

cascade of changes of deletion times, and one insertion
inQ max k'= max k'
0- k' €D, kels, —Qo

Proof: By definition of D>, any keyk' in D>, is notinQq.
If the samek’ was inserted before timg, thenk’ € Qy,
but this would contradict the fact thatis a bridge, and so

,,,,,,,, k' € Isy — Qo. This shows thaD~; C Iy — Qo, and so
max k'< max &
k€D, k€l —Qo
o - Let & = maxper,, g, k', and supposek >
1 maxy ep,, k'. This impliesk ¢ D>, and sot’ < d;, <t.
‘W q T W Because' was the last bridge before time d; cannot be

a bridge, and so there is another k&Y € Q4. — Qo C

_ " . ; " AL
Figure 4: The Inseft, “delete-mir{)”) operation causes a2t — Qo andk” > & otherwisek” would be deleted in

cascade of changes of deletion times, and one deletigg.in St€ad oft. But this contradicts that was maximum. O
We next study the effect of adding an operation

u = “delete-mir()” at time ¢ in the past. In that case, one
element will have to be removed frof),. Again, this op-
eration will have a cascading effect: if it is not @, the
max(k, max k') key k that will be deIeted_ by op_eratiom was sup_pose_d to
"KEDs, be deleted by the operatiari at timedy, but ask is being
Proof: As discussed above, the retroactive insertion willeleted at time by u, the operation,’ will delete the next
cause several elements to extend the time they are prekegtup, and so on. See Figure 4.
in the structure. Consider the chain of kefys< k; <
ks < --- < k; whose life in the structure is extended. Aftek EMMA 5.5. After an operation Inseft, “delete-min()”),
the retroactive update, the extended pieces of horizoegal she element to be removed frapg is
ments are frontt, k) to (dy, , k), from (dy, , k;) to (dy,, , , k;))
fori = 1,...,¢ — 1, and finally from(dy,, k¢) to (0, k). Juin K
They form a nondecreasing step function which, by construc-
tion, is not properly intersected by any of the (updated) vavheret' is the first bridge after time.
tical rays. The key that will be added €, at the end of the Proof: Consider the chain of keyls < ky < --- < k¢ < k
retroactive update i8;. Suppose there is a kéylargerthan whose life in the structure is shortened, withe D>, and
k¢ in D>;. This implies tha(d;, l%) is above every segmentt € @y. After the retroactive update, the shortened pieces
of the step function. But then, the vertical ray from thatrgoiof horizontal segments are frof, k1) to (dg,, k1), from
intersects the step function, which is a contradiction.hie t (dy,_,, k;) to (dg,,k;) fori = 2,...,¢, and finally from
particular case wherk is never deleted, the step function igdy, , k) to (0, k). First, it must be clear that there is a bridge
just one horizontal segment and the same argument holdsitd, because there is no key smaller thaim ¢4, , , and all
Note that removing a delete-niinoperation has the keys larger thatk in Qa,, are alsoiny, becausé € (. So
same effect as re-inserting the element that was beingedelate just have to show that there is no bridfjdetween times
at the time of the deletion. So we have: t anddy,. For this we observe that the shortened segments

element to be inserted) is

www.manaraa.com

attimest” € [t,d,) form a step function, and that none of ~ Acknowledgments. We thank Michael Bender, Prosenjit
the keysk; corresponding to the steps are()g, but they are Bose, Jean Cardinal, Alejandro Lopez-Ortiz, lan Munrad &me
in Q. o anonymous referees for helpful discussions and comments. |

Because remo\”ng an “lnsekt)" Operatlon from tlmet particular, LOpez-OrtIZ [8] considered some related orodi
has the same effect as adding a “deletefiiimperation Reaferences

directly after it, we also have: [1] J. Bentley. Algorithms for Klee’s rectangle problemsn-u

published manuscript, Dept. of Computer Science, Carnegie
Mellon University, 1977.

J. L. Bentley and J. B. Saxe. Decomposable searching
problems [: Static-to-dynamic transformatiords Algorithms
1:301-358, 1980.

COROLLARY 5.2. After an operation Dele{e) where the
operation at timet is u; = “insert(k)”, the element to be 2]
removed fronQ) is k if & € (Qg; otherwise, it is

min k'

K €Q,r [3] T. M. Chan. Dynamic planar convex hull operations in Rear
logarithmic amortized timeJ. ACM 48:1-12, 2001.
wheret' is the first bridge after time. [4] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan.
Making data structures persistentournal of Computer and
Again, because we don’t explicitly maintaip for all ¢, System Science38(1):86-124, 1989.
we ease the computation by using that/ is a bridge, then [5] A. Fi_at and H. Kaplan. Making data structures confl_uently
Qp = I<p N Q. persistent. InProc. 12th Ann. Symp. Discrete Algorithms

pages 537-546, Washington, DC, January 2001.

THEOREM5.3. There exists a partially retroactive priority [6] R. Fleischer. A simple balanced search tree vit1) worst-
queue data structure with all retroactive updates takimgeti E’:ase u;idatse .t'me;nztelrlns?;'offé Jféggal of Foundations of
O(logm) and present-time queries takirig(1) time. omputer Sciencd (2):137-149, ' .

.[7] M. L. Fredman and M. E. Saks. The cell probe complexity of
Proof: The history of all update operations is maintained ||L

) 8 . o dynamic data structures. Froc. of the 21st ACM Symposium
a doubly linked list, and the data structure will also exiljc on Theory of Computingages 345-354, May 1989.

maintain the se€), in a binary search tree, and associatingg] A. Lopez-Ortiz. Generalized infinite undo and specat
with each key a pointer to its insert operation in the list. user interfaces. Tech. Rep. CS-2003-33, U. Waterloo, 2003.
After each retroactive update, an element will be insertdd] H. Mannila and E. Ukkonen. The set union problem with
or deleted fromQ, according to the rules described in the backtracking. IrProc. 13th Int. Collog. Automata, Languages
lemmas above. In order to decide which element to insert or and ProgrammingLNCS 226, pages 236243, 1986.

delete, we need to be able to perform two types of operatiod§] G. Orwell. 1984 Signet Classic, 1949.
[11] R. Ramakrishnan and J. GehrkeDatabase Management

A. find the last bridge beforeor the first bridge aftet; SystemsMcGraw-Hill, 2002.
[12] R. Raman, V. Raman, and S. S. Rao. Succinct dynamic data
B. find the maximum key in>, — (o or the minimum structures. InProc. 7th Workshop on Algorithms and Data
keyinI<y N Qo. Structures LNCS 2125, pages 426-437, 2001.

o . L . [13] N. Sarnak and R. E. Tarjan. Planar point location using

If we maintain the list of updates, assigning a weight * pesistent search tree§ommun. ACM29(7):669-679, 1986.
of 0 to insertk) operations withk € Qo, +1 to insertk) [14] D. D. Sleator and R. E. Tarjan. A data structure for dyiam
with £ ¢ Qo, and —1 to delete-miit) operations, every trees.J. Comput. Syst. Sci26(3):362—-381, 1983.
bridge corresponds to a prefix with simSo, using the data[15] J. Snoeyink. Point location. In J. E. Goodman and
structure used in Theorem 5.1, we can answer the queries of J. O’'Rourke, editorsHandbook of Discrete and Computa-
type A in O(log m) time. Because every retroactive update tional Geometrychapter 30, pages 559-574. CRC Press LLC,
adds or deletes at most one element fr@w, only one Boca Raton, FL, 1997. .
weight change has to be performed in the structure, whidff] V- Strassen. Algebraic complexity theory. Handbook of
also take®)(log m). Theoretical Computer Scienceolume A, chapter 11, pages

If we maintain the list of insertions augmented by th 633-672. MIT Press, 1950.

. . . 7] R. E. Tarjan. Efficiency of a good but not linear set union
mod|f|ed_(a, b)-tree of [6], _an_d store in eagh internal nod_ algorithm. J. ACM 22:215-225, 1975.

the maximum of all keys in its subtree which are absent[{g] R E. Tarjan. A class of algorithms which require nostim
Qo, We can easily find the maximum key i3+ — Qo in time to maintain disjoint setsJ. Comput. Syst. Sgil8:110—
O(log m) time by walking down the tree. The minimumkey 127, 1979.

in I<x N Qo can also be maintained if we store in everjl9] J. Westbrook and R. E. Tarjan. Amortized analysis obalg
internal node of the tree the minimum of all keys in its rithms for set union with backtracking.SIAM J. Comput.
subtree which are if)y. Those values can be maintained 18:1-11, 1989.

in O(log m) time per retroactive update because each upd@ A- C. Yao. Should tables be sorted?ACM 28(3):615-628,

changes at most one elementgyf. O 1981.

www.manaraa.com

