
www.manaraa.com

Retroactive Data Structures
(extended abstract)

Erik D. Demaine� John Iaconoy Stefan Langermanz
Abstract

We introduce a new data structuring paradigm in which
operations can be performed on a data structure not only
in the present but also in the past. In this new paradigm,
called retroactive data structures, the historical sequence
of operations performed on the data structure is not fixed.
The data structure allows arbitrary insertion and deletion
of operations at arbitrary times, subject only to consistency
requirements. We initiate the study of retroactive data
structures by formally defining the model and its variants.
We prove that, unlike persistence, efficient retroactivityis
not always achievable, so we go on to present several specific
retroactive data structures.

1 Introduction

Suppose that we just discovered that an operation previously
performed in a database was erroneous (e.g., from a human
mistake), and we need to change the operation. In most ex-
isting systems, the only method to support these changes is
to rollback the state of the system to before the time in ques-
tion and then re-execute all of the operations from the mod-
ifications to the present. Such processing is wasteful, inef-
ficient, and often unnecessary. In this paper we introduce
and develop the notion ofretroactive data structures, which
are data structures that efficiently support modifications to
the historical sequence of operations performed on the struc-
ture. Such modifications could take the form of retroactively
inserting, deleting, or changing one of the operations per-
formed at a given time in the past on the data structure in
question.

After defining the model, we show that there is no gen-
eral efficient transformation from non-retroactive structures
into retroactive structures. We then turn to the develop-
ment of specific retroactive structures. For some classes of
data structures (commutative and invertible data structures,
and data structures for decomposable search problems), we�MIT Laboratory for Computer Science, 200 Technology Square, Cam-
bridge, MA 02139, USA.edemaine@mit.edu.yPolytechnic University, 5 MetroTech Center, Brooklyn NY 11201,
USA.jiacono@poly.edu.zChargé de recherches du FNRS, Université Libre de Bruxelles,
Département d’informatique, ULB CP212, Belgium. Stefan.
Langerman@ulb.ac.be.

present general transformations to make data structures effi-
ciently retroactive. For other data structures where the de-
pendency between operations is stronger, efficient retroac-
tivity requires the development of new techniques. In par-
ticular, we present a retroactive heap that achieves optimal
bounds.

1.1 Comparison to persistence.The idea of retroactive
data structures is related at a high level to the classic notion
of persistent data structures, because they both consider the
notion of time, but otherwise they differ almost entirely.

A persistent data structure maintains several versions
of a data structure, and operations can be performed on
one version to produce a new version. In its simplest
form, modifications can only be made to the last structure,
thus creating a linear relationship amongst the versions. In
full persistence [4], an operation can be performed on any
past version to create a new version, thus creating a tree
structure of versions. Confluently persistent structures [5]
allow a new version to be created by merge-like operations
on multiple existing structures, and thus the versions form
a directed acyclic graph. The data structuring techniques for
persistence represent a substantial cost savings over the naı̈ve
method of maintaining separate copies of all versions.

The key difference between persistent and retroactive
data structures is that, in persistent data structures, each
version is treated as an unchangeable archive. Each new
version is dependent on the state of existing versions of
the structure. However, because existing versions are never
changed, the dependence relationship between two versions
never changes. The user can view a past state of the structure,
but changes in the past state can only occur by forking
off a new version from a past state. Thus, the persistence
paradigm is useful for maintaining archival versions of a
structure, but is inappropriate for when changes must be
made directly to the past state of the structure.

In contrast, the retroactive model we define allows
changes to be made directly to previous versions. Because
of the interdependence of the versions, such a change can
radically affect the contents of all later versions. In effect
we sever the relationship between time as perceived by a
data structure, and time as perceived by the user of the
data structure. Operations such as “Insert 42” now become

www.manaraa.com

“Insert at time 10 the operation ‘Insert 42’ ”.

1.2 Motivation. In a real-world environment, large sys-
tems processing many transactions are commonplace. In
such systems there are many situations where the need arises
to alter the historical sequence of operations that were pre-
viously performed on the system. We now suggest several
applications where a retroactive approach to data structures
would help:

Simple Error. Data was entered wrong. The data
should be corrected and all secondary effects of the data
removed.

Security Breaches.Suppose some operations were dis-
covered to have been maliciously performed by an unautho-
rized user. It is particularly important in the context of com-
puter security to not only remove the malicious transactions,
but also to act as if the malicious operation never occurred.
For example, if the intruder modified the password file, not
only should we restore that file, but we should also undo lo-
gins enabled by this modification.

Tainted Sources. In a situation where data enters a sys-
tem from various automated devices, if one device is found
to have malfunctioned, all of its transactions are invalid over
a period of time and must be retroactively removed. For ex-
ample, in a situation where many temperature readings from
various weather stations are reported to a central computer, if
one weather station’s sensors are discovered to be intermit-
tently malfunctioning, we wish to remove all of the sensor
readings from the malfunctioning station because they are
no longer reliable. Secondary effects of the readings, such
as averages, historical highs and lows, along with weather
predictions must be retroactively changed.

Disconnection. Continuing with the weather-station
analogy of the previous paragraph, suppose the transmission
system for one weather station is damaged, but later the data
is recovered. We should then be able to retroactively enter
the reports from the weather station, and see the effects of
the new data on, for example, the current and past forecasts.

Online Protocols. In a standard client-server model,
the server can be seen as holding a data structure, and clients
send update or query operations. When the order of the
requests is important (e.g., Internet auctions), the userscan
send a timestamp along with their requests. In all fairness,
the server should execute the operations in the order they
were sent. If a request is delayed by the network, it should
be retroactively executed at the appropriate time in the past.

Settlements. In some cases it is mutually agreed upon
by the parties involved to change some past transaction and
all of its effects. We cite one example of such a settlement
and describe how the traditional method of handing such
settlements often fails in today’s systems. Suppose you
have two charge cards from one company. When a bill
comes from one card, you pay the wrong account. Upon

realizing the mistake, you call customer service and you
reach a settlement in which the payment is transferred into
the correct account. Unfortunately, the next month, you are
charged a late fee for the late payment of the bill. You call
customer service again, and the late fee is removed as per
the previous agreement. The next month, interest from the
(now removed) late fee appears on the bill. Once again you
must call customer service to fix the problem. This sequence
of events is typical and results from the system’s inabilityto
retroactively change the destination of the payment.

Intentional Manipulation of the Past. In Orwell’s
1984[10], the protagonist’s job was to change the past edi-
tions of a newspaper to reflect the desires of the government
to control the past. Retroactively changing several docu-
ments while maintaining consistency has many applications,
some more dangerous than others.

Dynamization. Some static algorithms or data struc-
tures are constructed by performing on some dynamic data
structure a sequence of operations determined by the input.
For example, the point-location data structure of Sarnak and
Tarjan [13] consists of performing a sequence of insertions
and deletions on a persistent binary search tree. Making such
data structures retroactive would allow us to dynamically
modify the input by retroactively modifying the operation
sequence, thus making static algorithms or data structures
dynamic.

1.3 Time is not an ordinary dimension. One may think
that the problem of retroactive data structures can be solved
by adding one more dimension to the structure under con-
sideration. For example, in the case of a min-heap, it would
seem at first glance that one could create a two-dimensional
variant of a heap, and the problem would be solved. The idea
is to assign the key values of the items in the heap to they
axis and use thex axis to represent time. In this represen-
tation, each item in the heap is represented by a horizontal

lifespan of element 1

lifespan of element 2

lifespan of element 3

lifespan of element 4

1 2 3 4

insert(1) insert(2) insert(3) insert(4)
delete−min

delete−min
delete−min

delete−min

lifespan of element 4

lifespan of element 3

lifespan of element 2

lifespan of element 1

lifespan of element 0

0 1 2 3

delete−min
delete−min

delete−min
delete−min

insert(4)insert(3)insert(2)insert(1)insert(0)

Insert(t=0,
 "insert(x=0)")

Figure 1: A single insertion of an insertion operation in a
retroactive heap data structure can change the outcome of
every delete-min operation and the lifespan of every element.

www.manaraa.com

line segment. The left endpoint of this segment represents
when an item is inserted into the heap and the right endpoint
represents when the item is removed. If the only operations
supported by the heap are insert() and delete-min(), then we
have the additional property that there are no points below
the right endpoint of any segment, because only minimal
items are removed from the heap. While this seems to be
a clean two-dimensional representation of a heap throughout
time, retroactively adding and removing an operation in the
heap cannot simply be implemented by adding or removing a
line segment. In fact, the endpoints of all the segments could
be changed by inserting a single operation, as illustrated in
Figure 1.

Thus, while time can be drawn as a spatial dimension,
that dimension is special in that complicated dependencies
may exist, so that when small changes are made to some
part of the diagram, changes may have to be made to the
rest of the diagram. Thus, traditional geometric and high-
dimensional data structures cannot be used directly to solve
most retroactive data-structure problems. New techniques
must be introduced to create retroactive data structures with-
out explicitly storing every state of the structure, much like
Chan’s breakthrough dynamic convex hull algorithm [3],
which does not explicitly store the hull.

1.4 Outline. The rest of the paper proceeds as follows.
In Section 2, we further develop the model of retroactive
data structures and explore the possible variants on the
model. Next, Section 3 considers some basic problems
about retroactivity, proving separations among the model
variations and proving that automatic efficient retroactivity is
impossible in general. In Section 4, we present two general
transformations to construct an efficient retroactive version
of a data structure, one for commutative invertible operations
and one for any decomposable search problem. Finally, in
Section 5, we discuss specific data structures for which we
propose to create efficient retroactive structures. Table 1in
Section 5 gives a partial summary of the results obtained.

2 Definitions

In this section, we define the precise operations that we
generally desire from a retroactive data structure.

2.1 Partial Retroactivity. Any data structural problem
can be reformulated in the retroactive setting. In general,
the data structure involves a sequence of updates and queries
made over time. We define the listU = [ut1 ; : : : ; utm ℄ of
updates performed on the data structure, whereuti is the
operation performed at timeti, andt1 < t2 < � � � < tm.

The data structure ispartially retroactiveif, in addition
to supporting updates and queries on the “current state” of
the data structure (present time), it supports insertion and
deletion of updates at past times as well. In other words,

there are two operations of interest:

1. Insert(t; u): insert intoU a new update operationu at
time t (or before operationut if it already exists).

2. Delete(t): delete the past update operationut from the
sequenceU of updates.

Thus, the retroactive versions of standard insert(x)
and delete(x) operations are Insert(t; “insert(x)”),
Insert(t; “delete(x)”), and Delete(t), where t repre-
sents a moment in time. For example, ifti�1 < t � ti,
Insert(t; “insert(x)”) creates a new operationu = insert(x),
which inserts a specified elementx, and modifies history
to suppose that operationu occurred between operationsuti�1 anduti in the past. Informally, we are traveling back
in time to a prior state of the data structure, introducing or
preventing an update at that time, and then returning to the
present time.

All such retroactive changes on the operational history
of the data structure potentially affect all existing operations
between the time of modification and the present time.
Particularly interesting is the (common) case in which local
changes propagate in effect to produce radically different
perceived states of the data structure. The challenge is to
realize these perceived differences extremely efficientlyby
implicit representations.

2.2 Full Retroactivity. The definitions presented above
capture only a partial notion of retroactivity: the abilityto
insert or delete update operations in the past, and to view
the effects at the present time. Informally, we can travel
back in time to modify the past, but we cannot directly
observe the past. A data structure isfully retroactiveif, in
addition to allowing updates in the past, it can answer queries
about the past. In some sense, this can be seen as making
a partially retroactive version of a persistent version of the
original structure. Thus, the standard search(x) operation,
which finds an elementx in the data structure, becomes
Query(t; “search(x)”), which finds the elementx in the state
of the data structure at timet.
2.3 Running Times. When expressing the running times
of retroactive data structures, we will usem for the total
number of updates performed in the structure (retroactive or
not),r for the number of updates before which the retroactive
operation is to be performed (i.e.,tm�r < t � tm�r+1),
andn for the maximum number of elements present in the
structure at any single time. Most running times in this paper
are expressed in terms ofm, but in many cases, it is possible
to improve the data structures to express the running time
of the operations in terms ofn and r, so that retroactive
operations performed at a time closer to present time are
executed faster. These improvements are not detailed here
due to space constraints.

www.manaraa.com

2.4 Consistency.We assume that only valid retroactive
operations are performed. For example, in a retroactive
dictionary, a delete(k) operation for a keyk must always
appear after a corresponding insert(k) in the listU ; and in a
retroactive stack, the number of push() operations is always
larger than the number of pop() operations for any prefix
of U . The retroactive data structures we describe in this
paper will not check the validity of recursive updates, but
it is often easy to create a data structure to verify the validity
of a recursive operation.

3 General Theory

The goal of this research is to design retroactive structures
for abstract data types with performance similar to their non-
retroactive counterparts. This section considers some of the
most general problems about when this is possible.

Unless stated otherwise, the results will apply to the
RAM model of computation (or Real-RAM when real values
are used), and sometimes to the pointer model [18] as well.
Lower bounds will be given in the straight-line-program
model [16] or in the cell-probe model [20].

3.1 Automatic Retroactivity. A natural question in this
area is the following: is there a general technique for
converting any data structure in (e.g.) the pointer-machine
model into an efficient partially retroactive data structure?
Such a general technique would nicely complement existing
methods for making data structures persistent [4, 5]. As
described in the introduction, retroactivity is fundamentally
different from persistence, and known techniques do not
apply here.

One simple approach to this general problem is the
rollback method. Here we store as auxiliary information all
changes to the data structure made by each operation in such
a way that every change could be reversed. For operations on
the present, the data structure proceeds as normal, modulo
some extra logging. When the user requests a retroactive
change at a past timet with tm�r < t < tm�r+1, the
data structure rolls back all changes made by operationsum; : : : ; um�r+1, then applies the retroactive change as if
it were the present, and finally re-performs all operationsum�r+1; : : : ; um. Notice that these re-performances may
act differently from how the operations were performed
before, depending on the retroactive change. Because the
changes made to the data structure are bounded by the time
taken by the operations, a straightforward analysis provesthe
following theorem:

THEOREM 3.1. Given any data structure that performs a
collection of operations each in worst caseT (n) time, there
is a corresponding retroactive data structure that supports
the same operations inO(T (n)) time, and supports retroac-
tive versions of those operations inO(rT (n)) time.

The rollback method is widely used in database manage-
ment systems (see e.g. [11]) and robust file systems for con-
currency control and crash recovery. It has also been studied
in the data structures literature under the name of unlimited
undo orbacktracking[9, 19].

Of course, this result, and its extension to operations
with nonuniform costs, is far too inefficient for applications
where r can ben or even larger—the total number of
operations performed on the data structure. The goal would
be to reduce the dependence onr in the running time of
retroactive operations. We show that this is not possible in
the straight-line-program model of computation:

THEOREM 3.2. There exists a data structure in the straight-
line-program model, supportingO(1) time update opera-
tions, but the (partially) retroactive insertions of thoseop-
erations require
(r) time, worst case or amortized.
Proof: The data structure maintains two valuesX andY ,
initially 0, and supports operations addX(
) and addY(
)
which add the value
 to the valueX or Y , and mulXY(),
which multipliesY byX , and store the resulting value inY .
Queries return the value ofY .

Consider the sequence ofm = 2n + 1 opera-
tions: [addY(an), mulXY(), addY(an�1), mulXY(), : : :,
mulXY(), addY(a0)℄. At the end of the sequence,X = 0
and Y = 0. We then retroactively insert the operation
“addX(x)” at the very beginning of the sequence. The value
of Y is now a0 + a1x + a2x2 + � � � + anxn, which is a
polynomial of degreen in x with arbitrary coefficients. By
Motzkin’s theorem [16], the computation of that polynomial
for a given value ofx requires
(n) multiplications, regard-
less of how much preprocessing time or space is used. Thus
the retroactive insertion of the addX(x) operation requires
that many multiplications. Because the retroactive modifica-
tion can be repeated an arbitrary number of times, and each
modification will have the same worst-case lower bound, the
lower bound also applies to amortized data structures.2

The straight-line-program model counts only the num-
ber of arithmetic operations performed by a program. Our
lower bound thus holds in more general models of com-
putation such as the Real-RAM model or the algebraic-
computation-tree model.

3.2 From Partial to Full Retroactivity. A natural general
question about the two versions of retroactivity is whether
partial retroactivity is indeed easier to support than full
retroactivity. In other words, is it easier to answer queries
only about the present? We first give a partial answer:

THEOREM 3.3. In the cell-probe model, there exists a
data structure supporting partially retroactive updates inO(1) time, but fully retroactive queries of the past require
(logn= log logn) time.

www.manaraa.com

Proof: The data structure is for the following problem:
maintain a set of numbers subject to the update insert(
),
which adds a number
 to the set, and the query sum() which
reports the sum of all of the numbers. For this problem, the
only retroactive update operations are Insert(t; “insert(
)”)
and Delete(t), whose effects on queries about the present are
to add or subtract a number to the current aggregate. Thus,
a simple data structure solves partially retroactive updates
in O(1) time per operation. In contrast, to support queries
at arbitrary times, we need to remember the order of the
update operations and support arbitrary prefix sums. Thus,
we obtain a lower bound of
(logn= log logn) in the cell-
probe model by a reduction from dynamic prefix sums [7].2

On the other hand, we can show that it is always
possible, at some cost, to convert a partially retroactive data
structure into a fully retroactive one:

THEOREM 3.4. Any partially retroactive data structure in
the pointer-machine model with constant indegree, support-
ing T (m)-time retroactive updates andQ(m)-time queries
about the present can be transformed into a fully retroactive
data structure with amortizedO(pmT (m))-time retroac-
tive updates andO(pmT (m) + Q(m))-time fully retroac-
tive queries usingO(mT (m)) space.
Proof: We define

pm checkpointst1; : : : ; tpm such that at
most 2pm operations have occurred between consecutive
checkpoints, and maintain

pm versions of the partially
retroactive data structureD1; : : : ; Dpm, where the structureDi only contains the updates that occurred before timeti.
When a retroactive update is performed for timet, we
perform the update on all structuresDi such thatti > t.
When a retroactive query is made at timet, we find the
largesti such thatt � ti, and perform onDi all updates
that occurred between timesti andt, and finally perform the
query on the resulting structure.

In order to reduce space, we use persistent data struc-
tures [4]. Given a sequence ofm operations, we perform the
sequence on a fully persistent version of the partially retroac-
tive data structure, and keep a pointerDi to the version ob-
tained after the firstipm operations fori = 1; : : : ;pm. The
retroactive updates branch off a new version of the data struc-
ture for each of the modifiedDi. After

pm=2 retroactive
updates have been performed, we rebuild the entire struc-
ture in timeO(mT (m)). This will ensure that the number
of updates between any two checkpoints is always betweenpm=2 and3pm=2. The resulting data structure will have
the claimed running times. The fully persistent version of
the partially retroactive data structure after a rebuild will use
at mostO(mT (m)) space because it can use at most one
unit of space for each computational step. The data struc-
ture will perform at most

pm=2 retroactive updates between
two rebuilds, each using at mostO(pmT (m)) time and ex-
tra space, and so the space used by the fully retroactive data

structure will never exceedO(mT (m)). 2
4 Transformable Structures

In this section, we present some general transformations to
make data structures partially or fully retroactive for several
easy classes of problems.

4.1 Commutative Operations. To highlight the difficult
case of nonlocal effects, we define the notion ofcommutative
operations. A set of operation types iscommutativeif
the state of the data structure resulting from a sequence of
operations is independent of the order of those operations.

If a data structure has a commutative set of operations,
performing an operation at any point in the past has the same
effect as performing it in the present, so we have:

LEMMA 4.1. Any data structure supporting a commutative
set of operations allows the retroactive insertion of opera-
tions in the past (and queries in the present) at no additional
asymptotic cost.

We say that a set of operations isinvertible if, for every
operationu, there is another operationu0 that negates the
effects of operationu, that is, the sequence of operations[u; u0℄ doesn’t change the state of the data structure.

LEMMA 4.2. Any data structure supporting a commuta-
tive and invertible set of operations can be made partially
retroactive at no additional asymptotic cost.

For example, a data structure forsearchable dynamic
partial sums[12] maintains an arrayA[1::n℄ of values, where
sum(i) returns the sum of the firsti elements of the array,
search(j) returns the smallesti such that sum(i) � j, and
update(i;
) adds the value
 to A[i℄. The state of the data
structure at the present time is clearly independent of the or-
der of the update operations, so it is commutative. Any oper-
ation update(i;
) is negated by the operation update(i;�
),
so the updates are also invertible, and so any data structure
for searchable dynamic partial sums is automatically par-
tially retroactive.

An important class of commutative data structures are
for searching problems. The goal is to maintain a setS of
objects under insertion and deletion operations, so that we
can efficiently answer queriesQ(x; S) that ask some relation
of a new objectx with the setS. Because a setS is by
definition unordered, the set of operations for a searching
problem is commutative, given that the deletion of an object
is always performed after its insertion. As long as the
retroactive updates do not violate this consistency condition,
we have:

LEMMA 4.3. Any data structure for a searching problem
can be made partially retroactive at no additional asymptotic
cost.

www.manaraa.com

For example, dictionary structures, but also dynamic
convex hull or planar width data structures can be stated
as searching problems and are thus automatically partially
retroactive. Note that these results can also be combined with
Theorem 3.4 to obtain fully retroactive data structures.

4.2 Decomposable Searching Problems.A searching
problem maintains a setS of objects subject to queriesQ(x; S) that ask some relation of a new objectx with the
setS. We already saw in Lemma 4.3 that data structures for
searching problems are automatically partially retroactive. A
searching problem isdecomposableif there is a binary opera-
tor2 (computable in constant time) such thatQ(x;A[B) =2(Q(x;A); Q(x;B)). Decomposable searching problems
have been studied extensively by Bentley and Saxe [2]. In
particular, they show how to transform a static data struc-
ture for such a problem into an efficient dynamic one. In
this section, we show that data structures for decomposable
searching problems can also be made fully retroactive.

THEOREM 4.1. Any data structure for a decomposable
searching problem supporting insertions, deletions, and
queries in timeT (n) and spaceS(n) can be transformed
into a fully retroactive data structure with all opera-
tions taking timeO(T (m)) if T (m) =
(n�) for some� > 0, or O(T (m) logm) otherwise. The space used isO(S(m) logm).
Proof: Every element that was ever inserted in the data
structure can be represented by a segment on the time
line, between its insertion time and its deletion time (or
present time if it wasn’t deleted). We maintain a segment
tree [1], which is a balanced binary tree where the leaves
correspond to the elementary intervals between consecutive
endpoints of the segments, and internal nodes correspond to
the union of the intervals of their children. Each segment
is thus represented as the union ofO(logm) intervals, each
represented by one node of the tree, and each node of the tree
will contain the set of segments it represents. For each node,
we maintain that set in a data structure supporting the desired
queries. Each retroactive update affects at mostO(logm)
of those data structures. Given a pointt on the timeline,
the set of segments containing that point can be expressed
as the union ofO(logm) sets from as many nodes. For
a retroactive query Query(t; x), we queryx in each of theO(logm) sets and compose the global result using the2
operator. IfT (m) =
(n�), then the query and update times
for a retroactive operation form a geometric progression
and the total time isO(T (n)), otherwise, the total time isO(T (m) logm). 2

For example, dictionaries, dynamic point location, and
nearest-neighbor query data structures solve decomposable
searching problems thus can be made fully retroactive. Of
course, in many cases, it will be possible to improve the
fully retroactive data structures obtained through the appli-

cation of Theorem 4.1. For example, any comparison-based
dictionary where only exact search queries are performed
can be made fully retroactive by storing with each key the
times at which it was present in the structure. The resulting
data structure will useO(m) space and all operations can be
performed inO(logm) time, alogm factor improvement in
both time and space over the straightforward application of
Theorem 4.1.

In other cases, though, improving upon the structures
obtained from Theorem 4.1 seems rather difficult, as is
the case for example with the dictionary problem allowing
predecessor and successor queries. Indeed, we can view
it as a geometric problem, in which we maintain a set of
horizontal line segments, where they coordinate of each line
segment is the element’s key and thex extent of the line
segment is the element’s lifetime. A faster retroactive data
structure would immediately result in a faster data structure
for dynamic planar point location for orthogonal regions,
which may also play a role in general dynamic planar point
location. In fact, this retroactive approach is hinted at as
a research direction for dynamic planar point location by
Snoeyink [15, p. 566].

5 Maintaining the Timeline

We showed in Theorem 3.2 in Section 3.1 that no general
technique can turn every data structure into an efficient
retroactive counterpart. This suggests that in order to obtain
efficient data structures, we need to study special cases
separately. In this section, we show how to construct
retroactive data structures by maintaining a structure on
top of the sequenceU of update operations (the timeline).
Table 1 gives a partial summary of our results.

In the following, we assume that the sequenceU is
maintained in a doubly linked list, and that when a retroac-
tive operation is performed at timet, a pointer to the opera-
tion following time t in U is provided (such a pointer could
for example have been stored during a previous operation).
In the case where the pointer is not provided, it could easily

Data Partially Fully
Structure Retroactive Retroactive

Dictionary (exact) O(logm) O(logm)
Dictionary (successor) O(logm) O(log2m)

Queue O(1) O(logm)
Stack O(logm) O(logm)

DEQUE O(logm) O(logm)
Union/Find O(logm) O(logm)

Priority Queue O(logm) O(pm logm)
Table 1: Running times for retroactive versions of a few
common data structures.m is the number of operations.

www.manaraa.com

be found inO(logm) time by maintaining a binary search
tree indexed by time on top ofU .

5.1 Queues.A queue supports two update operations,
enqueue(x) and dequeue() and two query operations, front()
which returns the next element to be dequeued, and back()
which returns the last element enqueued. Here we de-
scribe two data structure, one partially retroactive and one
fully retroactive, that thus support the update operations
Insert(t; “enqueue(x)”), Insert(t; “dequeue()”), Delete(t),
and queries, Query(t; “front()”), and Query(t; “back()”).
The partially retroactive data structure will only allow
queries at the present time, that is, at timet = 0.

LEMMA 5.1. There exists a partially retroactive queue
data structure with all retroactive updates and present-time
queries takingO(1) time.
Proof: The data structure maintains the enqueue operations
in a doubly linked list, and two pointers:B will point to the
last enqueued element in the sequence, andF to the next
element to be dequeued. When an enqueue is retroactively
inserted, if it occurs before the operation pointed to byF ,
we move that pointer to its predecessor. When an enqueue
is removed, if it occurs before the operation pointed byF ,
we move that pointer to its successor. When a dequeue,
retroactive or not, is performed, we move the front pointer
to its successor, and when a dequeue is removed, we move
the front pointer to its predecessor. TheB pointer is only
updated when we add an enqueue operation at the end of
the list. The front() and back() operations return the items
pointed byF andB, respectively. 2
LEMMA 5.2. There exists a fully retroactive queue data
structure with all retroactive operations taking timeO(logm) and present-time operations takingO(1) time.
Proof: We maintain two order-statistic treesTe andTd. The
treeTe stores the enqueue(x) operations sorted by time, and
theTd stores the dequeue() operations, sorted by time. The
update operations can then be implemented directly in timeO(logm), wherem is the size of the operation sequence
currently stored.

The Query(t; “front()”) operation is implemented by
queryingTd to determine the numberd of dequeue() op-
erations performed at or before timet. The operation
then returns the item inTe with time rank d + 1. The
Query(t; “back()”) operation useste to determine the num-
bere of enqueue() operations that were performed at or be-
fore time t, and simply returns the item inTe with time
ranke. Thus, both queries can executed in timeO(logm).

Using balanced search trees supporting updates in
worst-case constant-time [6], and by maintaining pointers
into the trees to the current front and back of the queues,
updates and queries at the current time can be supported
in O(1) time. Thus queues may be made efficiently fully

retroactive without changing their asymptotic run-times.2
5.2 Doubly Ended Queues.A doubly ended queue
(deque) maintains a list of elements and supports four up-
date operations: pushL(x), popL() which insert or delete an
element at the left endpoint of the list, pushR(x), popR(),
which insert or delete an element at the right endpoint of the
list, and two query operations left() and right() that return
the leftmost or rightmost element in the list. The deque gen-
eralizes both the queue and the stack.

THEOREM 5.1. There exists a fully retroactive DEQUE
data structure with all retroactive operations taking timeO(logm) and present-time operations takingO(1) time.
Proof: In a standard implementation of a DEQUE in an
arrayA, we initialize variablesL = 1 andR = 0. Then
a pushR(x) operation incrementsR and placesx in A[R℄,
popR() decrementsR, pushL(x) decrementsL and placesx in A[L℄, and popL() incrementsL. The operation left()
returnsA[L℄ and right() returnsA[R℄.

In our retroactive implementation of a DEQUE, we also
maintainL andR: if we maintain all pushR(x) and popR()
operations in a linked listUR and associate a weight of+1 to
each pushR(x) operation and a weight of�1 to each popR(),
thenR at time t can be calculated as a weighted sum of a
prefix of the list up to timet. The same can be done forL,
maintaining the listUL, and reversing the weights.

The values of the sums for all prefixes ofUR can
be maintained in the modified(a; b)-tree of [6] with the
elements of the list as leaves. Every node of the tree will
contain a valuer, and the sum of ther values along a path
to a leaf will compute the sum of the prefix ofUR up to
that element. After inserting an element with weight
 in
the list and in the tree, we set ther value in the leaf to

and walk along the path to the root, and add
 to the r of
all right siblings along the path. Deletions are processed
symmetrically.

Finally, we have to describe how to extractA[i℄ from
the data structure, wherei = R at time t. For this, we
augment each node of the tree with two values containing the
minimum and maximum prefix sum values for all the leaves
in its subtree. Note that these values can also be maintained
after insertions and deletions by adding
 to them whenever

is added to ther value of the same node, and updating them
if an insertion occurs in their subtree.

To find the contents ofA[i℄ at time t, we find the last
time t0 � t whenR had valuei. This can be done by finding
the last operation inUR before timet, walking up the tree,
and walking back down the rightmost subtree for whichi
is between the minimum and maximum value. The same is
done forUL. 2
5.3 Union-Find. A union-find data structure [17] main-
tains an equivalence relation on a setS of distinct elements,

www.manaraa.com

that is, a partition ofS into disjoint subsets (equivalence
classes). The operation create(a) creates a new elementa inS, with its own equivalence class, union(a; b)merges the two
sets that containa andb, and find(a) returns a unique repre-
sentative element for the class ofa. Note that the represen-
tative might be different after each update, so the main use
of find(a) is two determine if two elements are in the same
class. The Union-Find structure can be made fully retroac-
tive, but to simplify the discussion, we replace the find(a)
operation by a sameset(a; b) operation which determines ifa
andb are in the same equivalence class.

THEOREM 5.2. There exists a fully retroactive Union-
SameSet data structure supporting all operations inO(logm) time.
Proof: The equivalence relation can be represented by a
forest, where each equivalence class corresponds to a tree
in the forest. The create(a) operation constructs a new tree
in the forest with a unique nodea, sameset(a; b) determines
if the root of the trees ofa andb are the same, and union(a; b)
assumesa andb are not in the same tree, setsb as the root
of the tree that contains it, and creates an edge betweena
andb. Such a forest can be maintained inO(logm) time per
operation using the link-cut trees of Sleator and Tarjan [14],
which maintain a forest and support the creation and deletion
of nodes, edges, and the changing of the root of a tree.

In order to support retroactive operations, we modify the
above structure by adding to each edge the time at which it
was created. The link-cut tree structure also allows to find
the maximum edge value on a path between two nodes. To
determine whether two nodes are in the same set at timet,
we just have to verify that the maximum edge time on the
path froma to b is no larger thant. 2
5.4 Priority Queues. More sophisticated than queues,
stacks and deques is thepriority queue, which supports op-
erations insert(k), which inserts an element with key valuek, delete-min() which deletes the element with smallest key,
and the query find-min() which reports the current mini-
mum key element. The delete-min() operation is particu-
larly interesting here because of its dependence on all oper-
ations in the past: which element gets deleted depends on
the set of elements when the operation is executed. More
precisely, it is delete-min() that makes the set of operations
non-commutative.

Priority queues seem substantially more challenging
than queues and stacks. Figure 1 shows an example of the
major nonlocal effects caused by a minor modification to
the past in a priority queue. In particular, in this example,
the lifetime of all elements change because of a single
Insert(t; “insert(k)”) operation. Such cascading effects
need to be succinctly represented in order to avoid the cost
inherent in any explicit maintenance of element lifetimes.

Without loss of generality, we assume that all key values

inserted in the structure are distinct.tk will be used to denote
the insertion time of keyk, anddk its deletion time. We writeQt for the set of elements contained in the priority queue
at time t, and soQ0 is the set of elements in the queue in
the present time. LetI�t = fkjtk � tg be the set of keys
inserted after time t, andD�t = fk =2 Q0jdk � tg be the set
of keys deleted after timet.

In order to construct a retroactive priority queue, we
need to learn more about the structure of the problem.
For this, we represent a sequence of updates by a planar
figure where thex axis represents time, and they axis
represents key values. In this representation, each itemk
in the heap is represented by a horizontal line segment.
The left endpoint(tk; k) of this segment represents when an
item is inserted into the heap and the right endpoint(dk; k)
represents when the item is removed. Similarly, a delete-
min() operation is represented by a vertical ray shooting
from y = �1 and stopping at the intersection with the
horizontal segment representing the element it deletes. Thus,
insert(k) operations paired with their corresponding delete-
min() are together represented by upside-down “L” shapes,
and no two “L” intersect, while elements still in the structure
at present time (i.e. inQ0) are represented by horizontal
rays. See Figure 2.

Figure 2: The “L” representation of a sequence of operations.

One obvious invariant of a priority queue data structure
is that the numberjQ0j of elements present in the queue
is always equal to the number of inserts minus the number
of delete-min operations. Thus, when we add an operationu = “insert(k)” at time t in the past, one element will have
to be added inQ0. There are two possibilities: if the elementk is not deleted between timet and present time,k can just
be added toQ0. Otherwise, the elementk is deleted by some
operationu0 = “delete-min()”, but then the element that
was supposed to be deleted byu0 will stay in the structure
a little longer until it is deleted by some other delete-min()
operation and so on. So the insertion of operationu causes a
cascade of changes which is depicted in Figure 3.

LEMMA 5.3. After an operation Insert(t; “insert(k)”), the

www.manaraa.com

Figure 3: The Insert(t; “insert(k)”) operation causes a
cascade of changes of deletion times, and one insertion
in Q0.

Figure 4: The Insert(t; “delete-min()”) operation causes a
cascade of changes of deletion times, and one deletion inQ0.
element to be inserted inQ0 ismax(k; maxk02D�t k0)
Proof: As discussed above, the retroactive insertion will
cause several elements to extend the time they are present
in the structure. Consider the chain of keysk < k1 <k2 < � � � < k` whose life in the structure is extended. After
the retroactive update, the extended pieces of horizontal seg-
ments are from(t; k) to (dk1 ; k), from(dki ; ki) to (dki+1 ; ki)
for i = 1; : : : ; ` � 1, and finally from(dk` ; k`) to (0; k`).
They form a nondecreasing step function which, by construc-
tion, is not properly intersected by any of the (updated) ver-
tical rays. The key that will be added toQ0 at the end of the
retroactive update isk`. Suppose there is a keŷk larger thank` in D�t. This implies that(dk̂ ; k̂) is above every segment
of the step function. But then, the vertical ray from that point
intersects the step function, which is a contradiction. In the
particular case wherek is never deleted, the step function is
just one horizontal segment and the same argument holds.2

Note that removing a delete-min() operation has the
same effect as re-inserting the element that was being deleted
at the time of the deletion. So we have:

COROLLARY 5.1. After an operation Delete(t), where the
operation at timet is “delete-min()”, the element to be
inserted inQ0 is maxk02D�t k0

BecauseD�t can change for many values oft each
time an operation is performed, it would be quite difficult
to maintain explicitly. The next lemma will allow us to avoid
this task. We say that there is abridgeat timet if Qt � Q0.
Bridges are displayed as dotted vertical lines in Figure 2.

LEMMA 5.4. Let t0 be the last bridge beforet, thenmaxk02D�t k0 = maxk02I�t0�Q0 k0
Proof: By definition ofD�t, any keyk0 in D�t is not inQ0.
If the samek0 was inserted before timet0, thenk0 2 Qt0 ,
but this would contradict the fact thatt0 is a bridge, and sok0 2 I�t0 �Q0. This shows thatD�t � I�t0 �Q0, and somaxk02D�t k0 � maxk02I�t0�Q0 k0

Let k̂ = maxk02I�t0�Q0 k0, and supposêk >maxk02D�t k0. This impliesk̂ =2 D�t, and sot0 < dk̂ < t.
Becauset0 was the last bridge before timet, dk̂ cannot be
a bridge, and so there is another keyk00 2 Qdk̂ � Q0 �I�t0 � Q0, andk00 > k̂ otherwisek00 would be deleted in-
stead of̂k. But this contradicts that̂k was maximum. 2

We next study the effect of adding an operationu = “delete-min()” at time t in the past. In that case, one
element will have to be removed fromQ0. Again, this op-
eration will have a cascading effect: if it is not inQ0, the
key k that will be deleted by operationu was supposed to
be deleted by the operationu0 at timedk, but ask is being
deleted at timet by u, the operationu0 will delete the next
key up, and so on. See Figure 4.

LEMMA 5.5. After an operation Insert(t; “delete-min()”),
the element to be removed fromQ0 ismink2Qt0 k
wheret0 is the first bridge after timet.
Proof: Consider the chain of keysk1 < k2 < � � � < k` < k
whose life in the structure is shortened, withki 2 D�t andk 2 Q0. After the retroactive update, the shortened pieces
of horizontal segments are from(t; k1) to (dk1 ; k1), from(dki�1 ; ki) to (dki ; ki) for i = 2; : : : ; `, and finally from(dk` ; k) to (0; k). First, it must be clear that there is a bridge
atdk` because there is no key smaller thank in Qdk` , and all
keys larger thank inQdk` are also inQ0 becausek 2 Q0. So
we just have to show that there is no bridget00 between timest anddk` . For this we observe that the shortened segments

www.manaraa.com

at timest00 2 [t; dk`) form a step function, and that none of
the keyski corresponding to the steps are inQ0, but they are
in Qt00 . 2

Because removing an “insert(k)” operation from timet
has the same effect as adding a “delete-min()” operation
directly after it, we also have:

COROLLARY 5.2. After an operation Delete(t) where the
operation at timet is ut = “insert(k)”, the element to be
removed fromQ0 is k if k 2 Q0; otherwise, it ismink02Qt0 k0
wheret0 is the first bridge after timet.

Again, because we don’t explicitly maintainQt for all t,
we ease the computation by using that, ift0 is a bridge, thenQt0 = I�t0 \Q0.
THEOREM 5.3. There exists a partially retroactive priority
queue data structure with all retroactive updates taking timeO(logm) and present-time queries takingO(1) time.
Proof: The history of all update operations is maintained in
a doubly linked list, and the data structure will also explicitly
maintain the setQ0 in a binary search tree, and associating
with each key a pointer to its insert operation in the list.
After each retroactive update, an element will be inserted
or deleted fromQ0 according to the rules described in the
lemmas above. In order to decide which element to insert or
delete, we need to be able to perform two types of operations:

A. find the last bridge beforet or the first bridge aftert;
B. find the maximum key inI�t0 � Q0 or the minimum

key in I�t0 \Q0.
If we maintain the list of updates, assigning a weight

of 0 to insert(k) operations withk 2 Q0, +1 to insert(k)
with k =2 Q0, and�1 to delete-min() operations, every
bridge corresponds to a prefix with sum0. So, using the data
structure used in Theorem 5.1, we can answer the queries of
type A inO(logm) time. Because every retroactive update
adds or deletes at most one element fromQ0, only one
weight change has to be performed in the structure, which
also takesO(logm).

If we maintain the list of insertions augmented by the
modified (a; b)-tree of [6], and store in each internal node
the maximum of all keys in its subtree which are absent inQ0, we can easily find the maximum key inI�t0 � Q0 inO(logm) time by walking down the tree. The minimum key
in I�t0 \ Q0 can also be maintained if we store in every
internal node of the tree the minimum of all keys in its
subtree which are inQ0. Those values can be maintained
in O(logm) time per retroactive update because each update
changes at most one element ofQ0. 2

Acknowledgments. We thank Michael Bender, Prosenjit
Bose, Jean Cardinal, Alejandro López-Ortiz, Ian Munro, and the
anonymous referees for helpful discussions and comments. In
particular, López-Ortiz [8] considered some related notions.

References
[1] J. Bentley. Algorithms for Klee’s rectangle problems. un-

published manuscript, Dept. of Computer Science, Carnegie-
Mellon University, 1977.

[2] J. L. Bentley and J. B. Saxe. Decomposable searching
problems I: Static-to-dynamic transformations.J. Algorithms,
1:301–358, 1980.

[3] T. M. Chan. Dynamic planar convex hull operations in near-
logarithmic amortized time.J. ACM, 48:1–12, 2001.

[4] J. R. Driscoll, N. Sarnak, D. D. Sleator, and R. E. Tarjan.
Making data structures persistent.Journal of Computer and
System Sciences, 38(1):86–124, 1989.

[5] A. Fiat and H. Kaplan. Making data structures confluently
persistent. InProc. 12th Ann. Symp. Discrete Algorithms,
pages 537–546, Washington, DC, January 2001.

[6] R. Fleischer. A simple balanced search tree withO(1) worst-
case update time.International Journal of Foundations of
Computer Science, 7(2):137–149, 1996.

[7] M. L. Fredman and M. E. Saks. The cell probe complexity of
dynamic data structures. InProc. of the 21st ACM Symposium
on Theory of Computing, pages 345–354, May 1989.

[8] A. López-Ortiz. Generalized infinite undo and speculative
user interfaces. Tech. Rep. CS-2003-33, U. Waterloo, 2003.

[9] H. Mannila and E. Ukkonen. The set union problem with
backtracking. InProc. 13th Int. Colloq. Automata, Languages
and Programming, LNCS 226, pages 236–243, 1986.

[10] G. Orwell. 1984. Signet Classic, 1949.
[11] R. Ramakrishnan and J. Gehrke.Database Management

Systems. McGraw-Hill, 2002.
[12] R. Raman, V. Raman, and S. S. Rao. Succinct dynamic data

structures. InProc. 7th Workshop on Algorithms and Data
Structures, LNCS 2125, pages 426–437, 2001.

[13] N. Sarnak and R. E. Tarjan. Planar point location using
persistent search trees.Commun. ACM, 29(7):669–679, 1986.

[14] D. D. Sleator and R. E. Tarjan. A data structure for dynamic
trees.J. Comput. Syst. Sci., 26(3):362–381, 1983.

[15] J. Snoeyink. Point location. In J. E. Goodman and
J. O’Rourke, editors,Handbook of Discrete and Computa-
tional Geometry, chapter 30, pages 559–574. CRC Press LLC,
Boca Raton, FL, 1997.

[16] V. Strassen. Algebraic complexity theory. InHandbook of
Theoretical Computer Science, volume A, chapter 11, pages
633–672. MIT Press, 1990.

[17] R. E. Tarjan. Efficiency of a good but not linear set union
algorithm.J. ACM, 22:215–225, 1975.

[18] R. E. Tarjan. A class of algorithms which require nonlinear
time to maintain disjoint sets.J. Comput. Syst. Sci., 18:110–
127, 1979.

[19] J. Westbrook and R. E. Tarjan. Amortized analysis of algo-
rithms for set union with backtracking.SIAM J. Comput.,
18:1–11, 1989.

[20] A. C. Yao. Should tables be sorted?J. ACM, 28(3):615–628,
1981.

